
Ee
ey dee aie Bis

ae ie

SRE Sacaae Se a

Bie ees peas

Sa
SRE ses

23

ag
_.

3 By pauaaiet

7 7 co

ee es

Re

coe

he
fee ays
ES

s
t BS

eS
are ce

ace
cy L

estes §
Bae as

eB

ee

. : aL
eats Bs ox seats ee Cs BRekoRaRs e Ate 4 bt. | of :

: . og . oo
skal eapaeaeaene fy « ® : carga “8 ¥
SS SS | RS : ee : : a See

3

ee

RENIN“ Raa

FITTING THE BILL We examine a |
number of products currently on the market 8?
that are billed as ‘robots’ and see how well
they conform to our definition of the term

A TOUCH OF CLASS The Touchmaster is
a new graphics tablet that is designed to work 83
with most of the popular home machines.
We see how it compares with its rivals

Bs
= sai

EDUCATED GUESS We conclude our
look at TK! Solver by looking at its ability to
solve equations from incomplete
information through a series of ‘guesses’

oe

WHO D ND IT? Using the example ofa
murder mystery in which a list of suspects is 83?
drawn up and analysed, we continue to
examine the use of list processing in LOGO

RARER

NFORMATION STORAGE AND —
RETRIEVAL TO INKJETPRINTERA 8
weekly glossary of computing terms

PROGRAMMING PROJECTS

TAKING ORDERS Now that we have
discussed methods of moving around the 876
adventure world, we can look at how the
program analyses instructions from the player

00000000

TSS BONES POET PTET Se ORO RO NETS

YTE THE DUST Our debugger program
is now complete and this instalment also 8
concludes our series on 6809 machine code

OUTBOARD MOTOR We look at the
working principles of the stepper motors that B35
will be used to power the robot we are
building and construct the board to hold the
motor and accompanying parts

REFERENCE CARD We begin to list INSIDE
extracts from the 6502 programmers’ BACK
reference card | COVER

COVER PHOTOGRAPHY BY CHRIS STEVENS ROBOTS COURTESY OF ROBOTICS WORKSHOP

FITTING THE BILL
As we continue our series on the topic of
robotics, we examine some of the products
sold commercially under the name ‘robot’ to
see if they fill the role expected of them, and
if they fit our carefully constructed
definition of the term.

Up to this point in the Robotics series, we have
dealt primarily with theoretical considerations of
robot design and operation. In practice, many of
the concepts discussed have not _ been
implemented, or are restricted by a lack of
funding, intricate mechanical parts, and/or
intelligent software. Existing robots, whether they
are intended for home or industrial use, tend to fall
short of what we have come to expect of robots
over the years. Sensors exist to make a robot see,
hear, or feel, but as yet the sensations the robot
experiences have no meaning for it, and cannot be
synthesised to stimulate the robot to original, non-
programmed behaviour. Robbie the Robot and
his other fictional counterparts are still a long way
from reality.

Nevertheless, many products are now being

Spot The Robot

sold under the name ‘robot’. These range from
small toys for under £1 to vastly expensive R2D2
lookalikes and industrial robots. After examining
the components of robot design and theory for
several instalments, we must now consider what
constitutes a true robot. We must not be too

demanding, but we should be able to take what we
know and apply it in a workable definition.

The first consideration, and one that eliminates
many of the lower-priced ‘robot’ products, is
movement: can the robot move about a space by
itself? We cannot expect the robot to program
itself, or to set a course of action without human
guidance, but we can expect a robot, once set in
motion, to be able to operate independently of
continuous human control. Without this freedom
of movement, an object cannot be considered a
robot. : 7 |

Having passed the test of movement, our robot
candidate must now be evaluated on the basis of
how the movement is effected. A small toy car can
be given a motor and batteries that keep it moving
in a straight line. Add bumpers to it, and the car
can turn away from obstacles such as walls and

tables. Give the car a slightly unusual centre of

Our Robot

Powered and controlled from its
parent computer, the robot is
equipped with touch- and light- .
Sensitive sensors

SS

Big Trak
LOGO-like distance and
direction instructions can be
programmed into this
microprocessor-driven device
through its keyboard

a
=e =)

Bumper Car
This battery-powered toy will
run ina straight line until it hits
an object, in which case it will

turn clockwise 90° and continue
STEVE CROSS

Amazing Tracks
The three devices are
attempting to run a maze: the
toy car simply blunders from
wall to wall, Big Trak follows its
human operator’s programmed
instructions for running the
maze, while our robot learns the

maze through the interaction of
its software and sensors. We
can be sure that the robot will
solve the maze eventually, no

matter what happens; Big Trak 3
will follow its program, so may

solve the maze if the operator's
directions are correct; the toy
car could solve only ‘right-
handed’ mazes, and then only
by chance. !

When the car collides with
Big Trak, the car is unaffected
since its behaviour is
purposeless; Big Trak, however,
is diverted 90° off its course
(shown in green) but continues
to turn and travel as if it were
still on track (Shown in red).
Both devices react
unintelligently to this
unforeseen event where the ©
robot would treat it as just one
more aspect of an unpredictable
environment

THE HOME COMPUTER ADVANCED COURSE 821

2y
9009000

oO \ e) ROBOTICS, APPLICATION

EDUCATED GUESS —

examination 0
TK!Solver an equation processing
program for the Apple Il, IBM PC and
compatibles, and the ACT Apricot — with a
closer look i i ilities.

As we explained in
spreadsheet series (see page 804), TK!Solver is a

‘next generation’ software package that takes the
concept of the spreadsheet into the realm of higher
mathematics and engineering. We have already
shown that TK!Solver lets the user define
variables with names and use these in complex
mathematical equations. In this instalment, the
last of our spreadsheet series, we look in detail at
TK!’s unusual ability to iterate. This is a method
where the program can solve for a variable by
guessing at it. Ordinarily, when working with
equations, one can determine the values of all the
variables if enough information is given from the
outset. The program simply reduces the problem |
to a series of calculations. For example:

A? + B = 2C0S Y

can easily be solved for any of the three variables if
the other two values are known. Faced with this
equation — and given values for A and B — TK!s
Direct
calculations and output a value for Y.

- But there are occasions when the determination
_ ofavalue is not straightforward. One such case is a
redundant equation, which defines a variable in
terms of itself. For example, consider:

D=(A+B)/(2*D)
within a model where A is the only known value.
Other problems can occur as the result of an
incomplete model, or a model with many
interdependent variables and a limited amount of
data. The concept of iteration is a difficult one, so
let’s look at a more practical example of iteration. —

Let’s reconsider the car journey model created —
in the last part and add a few details to make it
more applicable. As you will recall, the previous
model was built around five values: distance, time,
speed, fuel and mileage. It could calculate
mileage, given speed and fuel consumption;
distance from speed and time; and several other
simple variations. What if we now want to
determine how fast we should travel in order to
complete a trip within a given budget?

To begin with, we must add several factors to
our model. For instance, the model must take into
account the power output of the vehicle, the
internal friction of the engine and wind resistance,

824 THE HOME COMPUTER ADVANCED COURSE |

Solver would perform the required:

rae

all of which will have an effect on the vehicle’s
mileage and speed. (We will assume that internal
friction is constant.) We must also have an upper
boundary for our budget, and the cost of the fuel
being consumed. | 7

We'll begin building the actual model by
entering these equations in the Rule sheet, one
equation to a line. These equations are read
automatically into the Variable sheet: _

Building Equations

Because there are several variables, the screen is
too small to hold all the information. To see all the
variables displayed, we can show the Variable
sheet in a window by itself. We do this by pressing
the semi-colon key (;) to move the cursor into the
variable window, and then type in W1. Now all the
variables can be seen and we can begin entering
values for them. _

DIRECT SOLVING
The model can be solved directly, if enough |
information is given at the start. For instance,
enter the following values in the INPUT column:

Input Values For Direct Solver

IAN McKINNELL

~~

&

Then press ! to perform the calculation. TK!
displays the message Direct Solver, and the
unknown values appear in the OUTPUT column, as
shown: ;

Direct Solver Results

This gives us a nice breakdown of all the
information we want. But what if we want to use
this model to solve a problem with less
information given at the outset? Let’s consider a
calculation where we have a maximum budget of
£50 to spend on fuel for a 1,000 mile trip. We
know the price of fuel (say £1.75 per gallon) so we
can easily determine how much we can spend per
mile. It might be more difficult, however, to
determine what speed we need to travel in order to
achieve the mileage needed to complete the trip
within our budget.
We begin by blanking the values already

entered. We do this by typing RVY (for Reset
Variables Yes). Then we type in the information
that we know: 1000 for distance, 50 for cost, and
1.75 for price. We use a value of 1/3 for internal
friction (which TK! evaluates to 0.333333) and
0.0000095 for wind resistance. Press ! to calculate
and the following values appear:

Incomplete Model

Note that no values have been generated for
speed, time or power — and speed is the specific
value we need. If we shift the display from the
Variable sheet to the Rule sheet, we will see that
three of our equations remain unsatisfied (which is
indicated by the * in the Status column):

Unsatisfied Equations

ITERATIVE SOLVER
Since we cannot solve the model using the Direct
Solver, we must try the Iterative Solver. This takes a
starting value, input as a guess, and fits it into the
equation. If the value is not correct, TK!Solver
uses a series of successive approximations (like the
game of ‘higher’ and ‘lower’) to pinpoint the exact
value. |

The first thing we do is take the mileage value
generated previously and move it into the Input
column to give TK! one extra value to start with.
We do this by typing | in the Status column next to
mileage on the Variable sheet. Then we estimate a
value for speed — say 50 — enter that number in
the Input column, type G for guess in the Status
column and press ! to calculate. TK! displays
Iterative Solver at the top of the screen and counts
off each approximation. On the fourth attempt,
TK! arrives at the correct value for speed, time and
power, as shown: |

Hterated Values

According to TK!Solver, an average speed of just
over 47 miles per hour is needed to complete the
trip within our budget. The closer a guess is to the
actual value, the sooner TK! finds a solution.

TK!Solver is available from Practicorp for the
Apple II, IBM PC and compatible machines, and
the ACT Apricot, for £195. Software Arts also
publishes ‘Solver Packs’ at £95 each with
predesigned models for specific applications.

THE HOME COMPUTER ADVANCED COURSE 825

~ TAKING ORDERS
Up to this point in our adventure game
programming project, we have discussed
methods of map making, formatting output
and moving around the adventure world. In
this instalment, we show how the program
analyses and obeys instructions given to it by
the player.

826 THE HOME COMPUTER ADVANCED COURSE

Adventures are usually constructed so that the »
player can move from location to location, picking
up and dropping objects along the way. A set of
commands allows the player to perform these
simple tasks. The commands we have used are:

Variations on these may also be available, such as
MOVE instead of GO, or GET instead of TAKE. Part of
the fun of playing an adventure game is to
determine what words the game will accept. For
example, a player might try the command SWIM
when in a dry location. If the program responds by
telling the player that he cannot swim here, then
the player could reasonably assume that there
are locations where swimming is allowed.
(Alternatively, the programmer might just want
the player to think that!)

The number of commands accepted by a game
varies according to the complexity of the game and
the amount of effort the programmer has made to
cover every eventuality. The most important thing
for the designer to do is to make sure the program
does not crash if a player tries to enter a command
that is not catered for. A failsafe routine that prints
‘I don’t understand’ may be all that’s required,
bearing in mind that some flexibility should be
added so that players can enter commands in
different ways. For example, it would be annoying
for a program that accepts the command TAKE
LAMP to respond to,the command TAKE THE LAMP
with ‘I don’t understand’. Adding flexibility will be
discussed at greater length later. For the moment,
we need to look at the type of instructions that
might be given during the game, and devise a
routine that will break these down into a form that

can be easily interpreted.

COMMAND SPLITTING
No matter what the instruction is, it is very likely
that it will be phrased in the imperative — such as,
GO SOUTH TOWARDS THE RIVER or KILL THE ALIEN.
The advantage of this sentence structure is that it is
easy to break down: the verb always comes as the
first word in the sentence, the object of the verb
follows this, and finally there may be some form of
qualification of the action. A first stage in the
analysis of a command is to separate the verb from

the rest of the sentence. This task can be easily
achieved by scanning through the sentence one
character at a time, using MIDS, until a space is
found. The part of the sentence that lies to the left
of the space is the verb, and can be assigned to the
variable VBS. The part of the sentence to the right
can be assigned to a second variable, NNS. This
subroutine is used in Haunted Forest to split the
instruction assigned to the variable ISS:

256@ REM *xx**x SPLIT COMMAND S/R *2%«x%

25190 IF ISS="LIST”" OR IS%="END" THEN ¥VBS=1S$!:F =12RETURN

P5515 IF IS#="LOOK" THEN V¥VBS=IS#$:iF=1:5RETURN

2520 F=8

P3538 LS=LENCISS>

. 2340 FOR C=i TO LS

25580 AS=MIDSCIS$,C,13

e568 IF AS<>" " THEN 2599

2578 VBS=LEFTSC(IS$,C-1):5F=1

2588 NNS=RIGHT#(IS$,LS-C)IC=LS

25969 NEXT C

e6baa :

261@ IF F=i1 THEN RETURN

2620 PRINT:PRINT"I NEED AT LEAST TWO WORDS”

2630 RETURN

Before the routine attempts to split up the
sentence, it first checks to make sure that the
command is not one of the three possible single-
word instructions — that is, LIST, LOOK or END. If it
is a single-word command, then the complete
instruction is assigned to VBS, and the routine is
exited. If the command is not one of these, then the
routine enters a FOR...NEXT loop and begins to
scan for the first space. Two techniques used
within this loop need special mention. Both relate
to the fact that it is extremely bad programming
style to perform a conditional jump out of a
FOR...NEXT loop without passing through the
NEXT statement. Instead, to signal the fact that
some condition has been met — in this particular
case, that a space has been found — a flag, F, is set
to one. Secondly, when the first space has been
found, it is a waste of time to continue scanning
through the rest of the sentence.

The loop can be neatly terminated at this point
by setting the loop counter, C, to its upper limit, LC.
Consequently, when the program again reaches
NEXT, it will pass on to the following instruction,
rather than loop back to the FOR statement. Once
the ioop has been correctly terminated, then the
status of the flag, F, can be tested. A flag value of
one indicates that the sentence consists of more
than one word, and ail that remains to do at this
stage 1s to return to the main loop. If the flag is not
one, then the command has only one word
and is not one of the single-word commands tested
for earlier. In this case, a message stating that two
words are required is printed before returning for
another command. |

NORMAL COMMANDS
For the main part of the program, the player will
simply move from location to location and pick up
or drop objects that may be found. Therefore, for
the majority of locations, the commands GO, TAKE,
DROP, LIST, LOOK, END — and their variants — are
sufficient to allow the player to do this. Only in
unusual circumstances will the player wish to use
other more specialised commands. For example,
there is little point in using the command KILL if

there is nothing present to kill. We can, however,
devise a program structure where, on the majority
of occasions, only the six commands associated

- with movement and objects are tested for. When
the player enters a new location, the program can
test to see if it is one that has been designated
‘special’ in some way. If this is the case, then any
new command requirements can be dealt with bya
specific command subroutine for that particular
location. Therefore, the main calling loop to our
program should do the following:

1) Describe the location and list the exits.
2) Determine whether the location is ‘special’.
3) Ask for a command and, if the location is not
special, scan the list of normal commands.

There must also be a facility in the main loop to
distinguish between a command that causes a —
move to a new location and one that does not. In
the first case, the loop needs to go back to the
beginning of the loop to describe the new location |
and decide whether or not it is special.-In the
second case, it is necessary only to loop back to ask
for a new command. The simplest way to
implement this is to use a ‘move flag’, MF, which is
normally set to zero. If a command involves
movement then this flag is set to one. The status of
MF can be tested at the end of the main loop and
the appropriate jump made. Add the following
lines to Haunted Forest:

27@ GOSUBESOO=REM SPLIT INSTRUCTION

275 IF F=0 THEN 260:REM INVALID INSTRUCTION,

2386 GOSUB3S@08:REM NORMAL COMMANDS

296 IF VF=@ THENPRINT:PRINT"I DONT UNDERSTAND”

30@ IF MF=1 THEN 246:REM NEW LOCATION

3160 IF MF=-@ THEN 266:REM NEW INSTRUCTION

3000 REM *x** NORMAL COMMANDS S/R «**%
3010 VF=8:REM VERB FLAG
3020 IF VBS="GO" OR VBS="MOVE" THENVF=1:!GOSUB3500
3039 IF VB$="TAKE" OR VBS="PICK"THEN VF=1:GOSUB3790
3040 IF VBS="DROP" OR VBS="PUT"THEN VF=1:GOSUB3900
3050 IF VB$="LIST" OR VBS="INVENTORY"THEN VF=1:G0S

UB4 100
3055 IF VB$="LOOK" THEN VF=1:MF=1:RETURN
3068 IF VB$="END" OR VBS="FINISH" THEN VF=1:GOSUB4

178 2
3078 RETURN |

In the first routine, another flag, VF, is used to
indicate whether or not the verb has been
understood and obeyed. Only when the verb has
been isolated is VF set.-to one. We can insert a

failsafe ‘I don’t understand’ statement in the main

loop by testing the status of VF. If VF remains zero
then the verb in the command has not been
recognised by the analysis routine, and the
statement is displayed.

In the next instalment of the project, we will
deal with subroutines for picking up, dropping and
listing objects. For now, we can add a short END
command subroutine to our group of normal
commands:
4176 REM x*xex*x END GAME SYR **%x

4180 PRINT:PRINT"ARE YOU SURE (Y/N) 7"

4196 GET ASI IF AS<C>"Y" AND AS<>"N" THEN 4198

$2698 IF AS="N" THEN RETURN

94216 END

The LOOK command is also straightforward. To
redescribe the current position, we simply need to
set the ‘move flag’, MF, to one and return to the
main program loop. Setting MF will cause the main

-THE HOME COMPUTER ADVANCED COURSE 827

\

RETURN

THEN NN@=hie! 1=LN

THEN NNS=LH: IT =LN

C=1

THEN NEXT I
+1

="EAST"
="WEST"

LEN (NN?)

C=

We Sap he

Cd:

CR WS

OR LE

I

ion words sought until a match is

LN

1 TQ LN

I

Cc

="NORTH"

=
=

F

*

a

direct

= "SOUTH"

NN#+"

MIDS CNN&

=

s

645 FOR I

3656 IF MIDS CNNS

3630 REM *x*x** SEARCH FOR OIRECTION S/R ERE

3655 WS

the four

found

3646 NNS&

36660 IF WS

3665 IF We

3678 NEXT I

3675 RETURN

3

g
ts.

t

ca
S
is no

ocati

if,
ions

changed by the LOOK command, the same!
Th

the player has performed a series of
will

its exi

e
on

after
, the
has

act

g, thus
d

on of the current location

iable

command is useful 1S

ADDING FLEXIBILITY

cribe a location an

ed

es that des

the value of the location v.

routin

al descripti

be describ

moved off the screen

origin

program to loop back to the be
the

As

/

o
o
o
0
0
0
0
0
 0

9
0
0
0
0
0
0
0

is

ect we developed a e proj
To add th

e we need

instalment of th In the last
ew routine to the

imply to add the
isn ne

routin

tt movement rou the player
different forms of the

g movement commands, issuin
e

When
S

>)
ent

ORTH following line
same movem may type in

ins , MOVEN GO NORTH b ample on. For ex tructi

a

D

=

S
o
s

o
O

~
~

)

O
&

O
W

ry
a
s
e

o

:
O
R

r
f

peweed

n
-

zy
e
r

o
L
t
d

-
£€x5

»
P
a
s

« 20
O
¢

no
e
a
e

oe
eo

fa
SO

t
S

—

c
e

e
t
o

o
S
a

i
e

=

o
e

w
b
o

©
&

f
#
S
s

to
3

8

©
e
a
n

iD)
it)
N
M
.

2
2
a
e

o
£
2
0

a
e
s
a

B
h
e
s

in
A
w
e

V
s

a
a
S

¢")
2

8
°
3
2

o
o
r

o
H

=
3

pEeuS
S
e

B
p

S
o
e
a
s
 &

o
n

=
o

G

a
»

A

m
=
 S
E
L
L
E

4
e
a
e

C
S
 O
o
m
'
™

6
o
m

O
g

bad
Send

q

S
B
a
e
s

a
o
e
 o
n

SD C
p
e

5
s

O
o
b
E
e
E
S

a

&

o)
3

=

a
2
)

o
f

6
0
.

i
e

i
e

B
a
e
 > 5

ZeGas
©

°

=

S
h
e
e

F
a
g
a
n
?

bon

B
o
g
s

e
p

0
 O

Z
e
a

§

S
S

h
e
e

O
H

og
B
C
D
O

D
O
W

S
e
p
g
e
c
a
g
s
e

S
O
,

5
¢

S
u
e
s

Se
a25

Ra 05
s
h
O
o
s

S
2
E
E

S
e

a
e
a
*

3

h
o

Z
B
E
S
o
e
n
w
E
R
U
H
=

oO
S
i
g
e
.

g
s

S
2
P
8
5

2595
5

oO

s
S
a
2
o
-

m
a
e

O
y

h
o
s

o

B
O
e

a

o
p

O
P

4
S

e
&
O

8

a
s
s
e
s

&

5
5

=

9

8
-

BZ
S
o
h

s
e
y

8
s

w
S
e
g
s
e
e
a
e
s

B
e
e
n
e

a
n

©

@

D
Y

&

Men)
r
o
e
)

b
e
d

B
e
y

>

A
S

4
?
)

a
e

w
e

2

o
n

o
o
g
e
r
=

a
e

e
e

o
e

OO.

o
O
G
5

3
0

2

z
s

c
e

&

5

S
e
e

b
E

L
D

S
s
R
e
e
a
0
n
a
q
g
z
c

O
E

Of
o
m
g

O
R
S

2
9

S
E
L
E
S

L
S
6
S
Z
s
S
S

O
n
n
a

s
o
o

y
o

a

“
m
e
e
e

s
s

o
a

D
O

O
'
S

o
R
?

R
S
.

a
r

>

=

2
S

a
D
)

o
u

N

o
D

S
h

3

O
o

e
S

ga
or e

R
.
 e

B
S
R

e
t

E
S

a

2
c
S
S
U

EE

F
]
a
s
P

r
o

g
d

os
S
H
E
E
R

Y
S
p
e
s
a
”

’
se

S
m

a
g

k
U
S

E
S

-
v
s
e
s

S
y
e
e
a
g
r
o
s

)
R
o
 S

S
s
v
o
s
e
v
t
s

e
a
e
g
a
g
”

:
2
3

h
g

o
e

F
E

Sore
S
E
S

>

N

5
)

*
a
i

e
n
d

Peo
b
e
e
s

R
o
e

S
i
s

d
0

D
)

=

Fp)
o
v
e
)

E
E
E
R
o
M
v
E

=
S
=
S
o
v
 gE

o
s

a
t
e
s
 B=

-=yc
R
P
e
a
e
e
e
s

2
2

ed as N for NORTH. would be accept

828 THE HOME COMPUTER ADVANCED COURSE

sa

INFORMATION STORAGE AND
RETRIEVAL
Information storage and retrieval’ is the term used
for the accessing and retrieval of information from
a magnetic medium such as disk, tape or — in
older systems — cards or punched tape. This
information may be in the form of files, programs,
data or graphics. It is necessary to use a storage
medium that will not only retain the information
when the power is switched off, but also allow the
computer to read the information back in at some
other time. This means that a computer must have,
or be attached to, an interface that can read and
write the data. Thus information storage and
retrieval has come to mean not only the process of
reading and writing information, but also the
techniques involved in such a process.

INFORMATION TECHNOLOGY
In one sense, information technology has been
around for thousands of years: hieroglyphics, the
abacus, the quill pen and the printing press are all
examples. In the last decade or so, following the
development of microelectronics and_ the
subsequent dramatic fall in the price of such
circuitry, information technology (IT) has come to
mean the electronic storage, transmission and
processing of information — specifically with
reference to computers, video and
pager es As such, IT has already had
a profound effect on much of the world’s
population, and most major organisations are now

dependent on computers. An enormous amount
of effort and resources is currently being put into
information technology. The world now depends
for its communications on satellites, such as
COMSAT, while other satellites constantly
monitor every inch of the world’s surface.

INFORMATION THEORY
Information theory (developed by Claude
Shannon at Bell Laboratories, New Jersey, in
1948) is the area of computing that investigates the
transmission of data. It involves the examination
of newly-arrived data and whether it tells us
something new — that is, the extent to which it
reduces the uncertaintyin the information system.
Thus, information theory consists of the study of
the nature of the information and its speed of
arrival. In its simplest form, this restricts
information theory to the rate at which new
information arrives, and from which channel or
source.

However, in a wider sense, information theory
can include such areas as coding theory. This
discipline covers the translation of data from one
form to another, and how this can be
accomplished efficiently without any loss of the
information being transmitted.

INITIALISATION
Primarily, initialisation is the process performed
by the computer’s ROM-based operating system
when the machine is switched on. This involves

default values being placed in the registers and
various addresses in memory. Typically, during
initialisation, a microcomputer will set the stack
pointer, clear the decimal mode and initialise the
various input/output devices. This initialisation
will also set the top and bottom of memory
pointers and the zero page. Finally, initialisation
includes the setting up of the initial screen display
and the screen editor variables.

Initialisation has a second meaning: the
formatting of disks. This takes the form of writing
the track that will contain the disk directory. The
information written on this track is the disk’s title,
the block availability map (BAM) and a list of
markers for each track on the disk.

Initialisation can also be performed by
programmer. If a program is to be properly
structured, variables should have initial values
assigned to them at the beginning of a program.
This is often termed the ‘initialisation procedure:

INK JET PRINTER
An ink jet printer forms characters by squirting
droplets of ink from a nozzle at the piece of paper.
Although these printers were developed in the
1960s, it was not until the mid-1970s that their use
became widespread.

There are two types of ink jet printer. The
pulsed jet printer consists of either one or a
number of nozzles, which fire several droplets to
produce a single dot on the paper. By arranging
these dots in patterns, characters can be built up —
in much the same way as a dot matrix printer forms
its type. If a number of nozzles are fitted to the
print head, then the user has the possibilty of
multicolour or higher resolution printing.

The other type of ink jet printer is known as the
continuous stream printer. As its name suggests,
this printer shoots a continuous jet of ink at the
paper. The droplets in the stream are electrically
charged as they leave the nozzle, and then pass
between charged electrodes, which alter the
direction of the ink stream. The droplets of ink are
directed to a precise position, and the character is
drawn in much the same way as a pen stroke.

STEVECROSS

A Drop In Quality
Ink is fired at the paper through
a nozzle that breaks the stream
into separate droplets. These
are electrically charged, which
enables the metal deflector
plates to direct them into
character patterns on the paper
— the electron beam ina
cathode ray tube is moved
around the screen in exactly the
same way

THE HOME COMPUTER ADVANCED COURSE 829

IAN McKINNELL |

~ ATOUCH OF CLASS —

} The Touchmaster Pad
The sheet provided with the
software simply slots into the
drawing area. By pressing the
appropriate command on the
right-hand side of the overlay
and moving the pencil, stylus or
finger to the drawing area the
command will be executed on
the screen

830 THE HOME COMPUTER ADVANCED COURSE

as aids in the construction of graphics
displays. The Touchmaster graphics tablet is
unique in that it may be used with most of
today’s popular home computers and, so the
manufacturer claims, can also be used as a
simplified replacement keyboard.

Today’s best-selling computers all support high-
resolution graphics displays. However, unless
ready-written graphics software is available, much
time and effort is required to create such displays
and many features are not fully utilised. A ‘sketch’
program is not sufficient because the user will
often wish to copy an existing image into the
computer instead of simply drawing freehand.

Several digitisers have been marketed for this
purpose, but these have mostly been designed for
use with specific machines, such as the BBC Micro
or ZX Spectrum. The Touchmaster graphics

Many different devices have been marketed |
tablet is designed to work with a wide range of
home machines (some of which will require a
suitable interface or cable). This device is also
being promoted as a replacement keyboard, but
the simplicity of its design means that such use is
restricted to selection between a number of menu
options or for simple.games control. A computer

keyboard 1s still required for data entry, as well as
for loading the Touchmaster software itself.

The Touchmaster is fitted in a neat grey case
measuring 350 by 330 by 35mm. The back of this
is slightly raised, forming a convenient angle for
drawing. A plug-in transformer is supplied, with a
single red LED indicating when power is on;
however, no on/off switch is fitted. To allow the
tablet to be used with a wide range of home
machines, both serial and parallel interface
sockets are fitted to the rear panel, together with a
socket — not mentioned in the manuals — for a
foot switch. In fact, the manuals are barely
adequate: the hardware manual gives instructions
on the connection of the tablet and provides a
number of simple BAsic programs for reading co-
ordinates, but is insufficiently detailed.

The tablet relies on the membrane technology
that was developed on the ZX81 and Spectrum
keyboards, and provides a 256 by 256 pixel
resolution. The upper layer is separated from the
lower resistive film by an insulating mesh, and
pressure on the upper layer forces it to make
contact with the film. The tablet contains a
microprocessor that scans the top film in one
direction while scanning the lower layer in
another, and the co-ordinate of the ‘contact point’
is then sent over both serial and parallel interfaces.
The serial interface is used to connect the tablet to
the BBC Micro, while the parallel interface is
required for use with the Commodore 64, Vic-20,
Spectrum and Dragon. The ‘Touchmaster’s
resolution is less than that provided by many hi-res
screen displays, so BBC Micro owners, for
example, will be unable to resolve to a single pixel
in Mode 0.

MULTIPAINT PROGRAM
A drawing program called Multipaint is supplied
with the ‘Touchmaster. This provides a
demonstration of the facilities provided, but is
hardly a comprehensive graphics aid. A plastic
template gives a menu of the facilities available,
with the selected option displayed in a ‘status’
window at the bottom of the screen. Five different
brush types may be used; each of these can be any
width from two to 32 pixels, in steps of two pixels.
The window also shows the current drawing mode
— Dots, Points or Freehand — and the selected

xR | _ ;

re

foreground and background colours. Colours may
be changed by pressing the required option on the
menu until the desired choice appears in the status
window. : 2

Once the correct colours and brush types have
been selected, further options are avilable for the
creation of boxes, circles, polygons and ‘rubber-
banded’ lines. A stylus is supplied with the
package, but finger pressure may be used instead.
The Touchmaster, with its larger tablet area, does
not suffer from the same restrictions as the Koala-
pad (see page 629): pressure from a finger may be
translated into a precise co-ordinate rather than a
mere approximation, so electronic finger-painting
is a real possibility!

Unfortunately, Multipaint offers no more than
rudimentary features. A FILL option is marked on
the template and documented in the manuals, but
— on the Spectrum version at least — this does not
appear to operate in the expected manner. Neither
is there any facility for magnification or editing,
which means that colours may not be changed. On
the Spectrum, where it is often easier to draw in
black and white before adding colour, this is a
decided disadvantage.

As a piece of hardware the Touchmaster tablet
appears to have a lot going for it compared with
rivals like the Grafpad and the Koala-pad. It is :
robustly built and offers a full A4-sized drawing
area that can be connected to most of the more
popular home computers. One § significant
advantage is that if you decide to upgrade or
change your machine in the future, all that is
required is a new interface — plus the appropriate
software, of course.

It is a disappointment that the documentation
and software supplied should be so poor

-compared with the standard of the tablet itself.
Touchmaster is bringing out a range of software
designed specifically for use with this tablet; |

_ although the real proof of success will come if |
independent software houses decide to support it. !

THE HOME COMPUTER ADVANCED COURSE 831

WHO
DUNNIT? ©
Our s series s of investigations into the u use e of
LOoGO’s list processing facilities continues
with a look at how to set up a simple
database. We use the example of a murder
investigation, in which a list of suspects is
created and then analysed to ascertain who

| the murderer v was. |

community in the Ozark Mountains. eatich
has been viciously attacked with an axe and killed.
We know that Matthew and Joshua both own
axes, James and Ebenezer own guns, and cousin
Jane has a knife. Matthew and James both had
blood on their hands when they were questioned
by the local sheriff.

Our LoGo database of information about this
crime will consist of a list of facts — each of which
consists of a relation, together with one or more
nouns. When represented in LOGO, one fact is
[OWNS MATTHEW AXE] or, in English, ‘Matthew
owns an axe’. To represent the fact that James had
blood on his hands, we use [BLOODY JAMES].
We begin our investigation with an emply

database:

 TOSETUP |
MAKE “DATABASE []

END
We then add facts to our database as we discover
them (providing they are not already in the
database). For example, we would input ADD
[OWNS JANE KNIFE] using the following ADD

_ procedure:

TO ADD :FACT
IF NOT MEMBER? :FACT :DATABASE THEN
MAKE “DATABASE FPUT :FACT :DATABASE

END |

The database will eventually fill up:

[[BLOODY MATTHEW][BLOODY JAMES][KILLED
ZACHARIAH AXE] [OWNS MATTHEW AXE]
[OWNS JOSHUA AXE] [OWNS JAMES GUN]
[OWNS EBENEZER GUN] [OWNS JANE KNIFE]]

To print out the database use SHOW. This can be
followed by either “ALL, in which case the whole
database will be printed, or by the name of a
relation, in which case only the facts for that
relation are printed. So, SHOW “OWNS will show us
who owns what.

TO SHOW :S
IF :S = “ALL THEN LIST.ALL :DATABASE
LIST.REL :S :DATABASE

END

832 THE HOME COMPUTER ADVANCED COURSE

TO LIST.ALL :LIST
IF EMPTY? :LIST THEN STOP
PRINT FIRST :LIST
LIST.ALL BUTFIRST : LIST

END |

TO LIST.REL :S :LIST
IF EMPTY? :LIST THEN STOP |
IF :S = FIRST FIRST :LIST THEN PRINT FIRST

“LIST
LIST.REL :S BUTFIRST :LIST

END

Now we must devise ways of querying the
database. The simplest kind of query we might
make of our database is to check whether a fact is
known to be true. This we do with a procedure
called DOES, which checks whether a fact is in the
database. For example, DOES [OWNS JANE KNIFE]
should give the answer YES.

TO DOES :FACT
IF MEMBER? :FACT :DATABASE PRINT “YES

ELSE PRINT “NO
END

It would be much more useful for our investigation
into this terrible murder if we could ask questions
such as “Who owns an axe?’. The way we will deal
with this is to use ‘variables’. Any word whose first
character is ? will be assumed to be a variable. We
can then paraphrase the question as: __

WHICH [OWNS ?SOMEONE AXE]

The reply to this will be a list of all possible values
of the variable ?SOMEONE that are consistent with

the information in the database.

[?SOMEONE MATTHEW]
[?SOMEONE JOSHUA]
NO (MORE) ANSWERS

We can have multiple variables. For example:

WHICH [KILLED ?MAN ?IMPLEMENT}]

will give the answer:

~ [?MAN ZACHARIAH] [?IMPLEMENT AXE]
~ NO (MORE) ANSWERS

_ Let’s consider the procedures that enable this
analysis of the database, individually. WHICH
passes the job over to FIND, indicating DATABASE as
the source of facts.

TO WHICH :QUERY
FIND :QUERY :DATABASE
PRINT [NO (MORE) ANSWERS]

END
FIND sets up two global variables, VARS and ANS:
VARS is used to hold each possible set of values of
the variables in the question, and these are
collected together in the list ANS.

TO FIND :QUERIES :DATA
MAKE “VARS []
MAKE “ANS []
COMPARE :QUERY :DATA
PRINTL :ANS

END

COMPARE looks at each fact in the database in turn.
If there is a match then the new set of values in
VARS are added to ANS before setting VARS back to
the empty list. COMPARE then continues working
through the DATABASE to see if there are any other
possible matches.

TO COMPARE :QUERY :DATA |
IF EMPTY? :DATA THEN STOP
IF MATCH? :QUERY FIRST :DATA THEN MAKE

“ANS FPUT :VARS :ANS
MAKE “VARS []
COMPARE :QUERY BUTFIRST :DATA

END

To see what MATCH? does, consider the case where
the inputs are [OWNS ?SOMEONE AXE] and [OWNS
JOSHUA AXE] in response to which MATCH? outputs -
TRUE and sets VARS to [?SOMEONE JOSHUA]. If the
inputs are [OWNS ?SOMEONE AXE] and [KILLED
ZACHARIAH AXE], then MATCH? outputs FALSE.

The real difficulties arise, however, if there is
more than one variable involved. VALUE? is used to
check if the variable has already been assigned a
value for that fact in the database.

We have used here an alternative notation for
conditionals in Loco. TEST evaluates a condition. If
the result is true then the actions following IFTRUE
will be performed, otherwise the actions following
IFFALSE will be carried out.

TO MATCH? :QUERY :FACT
IF ALLOF EMPTY? ‘QUERY EMPTY? :FACT THEN

OUTPUT “TRUE ;
TEST FIRST FIRST :QUERY = “?
IFTRUE IF NOT VALUE? FIRST :QUERY FIRST

“FACT :VARS THEN OUTPUT “FALSE
[FFALSE IF NOT (FIRST :QUERY = FIRST :FACT)

_ THEN OUTPUT “FALSE
OUTPUT MATCH? BUTFIRST :QUERY BUTFIRST

“FACT se
END

To see how VALUE? works, let’s first consider the
case where the inputs are ?/MPLEMENT, AXE, and
[?MAN ZACHARIAH]. VALUE? tries to ascertain
whether the variable ?IMPLEMENT could have the
value AXE. There are _ three possibilities:
~?IMPLEMENT already has a value, which is not AXE,
and VALUE? outputs FALSE; ?IMPLEMENT already
has the value AXE, and VALUE outputs TRUE; or
?IMPLEMENT does not have a value, so it is given
the value AXE, and this information is added to
VARS and TRUE is output.

TO VALUE? :NAME :VALUE :VLIST
IF EMPTY? :VLIST THEN MAKE “VARS LPUT LIST

“NAME :VALUE :VARS OUTPUT “TRUE
TEST :NAME = FIRST FIRST :VLIST
IFTRUE IF :VALUE = LAST FIRST :VLIST THEN

OUTPUT “TRUE ELSE OUTPUT “FALSE
OUTPUT VALUE? :NAME :VALUE BUTFIRST

“VLIST |
END

_ PRINTL simply arranges for the components of ANS
to be printed out below each other.

TO PRINTL :LIST
IF EMPTY? :LIST STOP |
PRINT FIRST :LIST
PRINTL BUTFIRST :LIST

END

MORE COMPLEX ENQUIRIES
Our investigation will not go far, however, unless .
we can ask more complex questions, such as “What
implement killed Zachariah, and who owns such
an implement?’ In Loco, this reads:

WHICH [[KILLED ZACHARIAH ?IMPLEMENT]|
[OWNS ?SUSPECT ?IMPLEMENT]]

WHICH now takes a list of queries as input and the
values found will be those that make all of the
queries true. If you then wish to ask a single query
with this new form of WHICH the syntax we use is:

WHICH [[OWNS ?ANY KNIFE]]

We need make only minor alterations to these
procedures:

TO WHICH :QUERIES
FIND :QUERIES :DATABASE
PRINT [NO (MORE) ANSWERS] .

END

TO FIND :QUERIES :DATA
_ MAKE “VARS []
MAKE “ANS []
COMPARE :QUERIES :DATA
PRINTL :ANS

END
COMPARE now has a rather difficult job to do. Let’s
take [[KILLED ZACHARIAH ?IMPLEMENT][OWNS
2SUSPECT ?IMPLEMENT]] as an example input.

_ COMPARE goes through the database, one fact at a
time, to find a match for the first query, and ends
up matching ?IMPLEMENT with AXE. The routine
then considers the second query ([OWNS
2SUSPECT ?IMPLEMENT]), starting again from the
beginning of the database. A match is found for
the second condition, with the value of
?IMPLEMENT as AXE and ?SUSPECT as MATTHEW.
There are no more queries, so this is a possible
solution. |

But we have not finished yet; there may be other
values that satisfy the second query, while keeping
?IMPLEMENT as AXE. So COMPARE now proceeds

_ through the database from the point it left off, and
indeed finds a second solution with ?SUSPECT as
JOSHUA. Of course, the procedure does not stop
there, but continues searching the DATABASE. ‘This
time it reaches the end without finding any new
matching values.

It is possible, however, that there is another
solution to the first query — other than
?IMPLEMENT as AXE — so we must go back to the
point where we found that match in the database
and carry on from there. This process is called
backtracking. In this case, there are in fact no other
solutions. :

THE HOME COMPUTER ADVANCED COURSE 833

In order not to lose track of where it is up to in its
assignment of variables, COMPARE puts the present
values on a stack before MATCH? is used (since
MATCH? may alter these assignments), and then
recovers these values afterwards. Here is the full
procedure:

TO COMPARE :QUERIES :DATA |
IF EMPTY? :QUERIES THEN MAKE “ANS FPUT

‘VARS :ANS STOP
IF EMPTY? :DATA THEN STOP
PUSH :VARS
TEST MATCH? FIRST :QUERIES FIRST :DATA
IFTRUE COMPARE BUTFIRST :QUERIES

‘DATABASE
PULL “VARS
COMPARE :QUERIES BUTFIRST : DATA 7h.

END

In COMPARE we use a stack to keep track of the
value of VARS, instead of using a temporary
variable, because COMPARE could call itself
between the time we want to save the values and
the time we want to restore them. Therefore, any
such temporary variable could be overwritten by

834 THE HOME COMPUTER ADVANCED COURSE

the next call and the original values lost. ‘The stack
prevents this from happening.

PUSH puts a value on ‘top’ of the stack, first
creating the variable STACK if it does not already
exist.

TO PUSH :DATA
IF NOT THING? :STACK THEN MAKE “STACK (]
MAKE “STACK FPUT :DATA :STACK

END —

PULL takes an item from the stack, and assigns it as
the value of a variable.

TO PULL :‘NAME
MAKE :NAME FIRST :STACK
MAKE “STACK BUTFIRST :STACK

END

~ What we have then are the rudiments of a ‘logic
programming’ language. That is a language in
which we simply add facts and rules to a database
and then query that database by means of logical
descriptions of the data we require. The best

_example to date of a logic programming language
iS PROLOG — but that’s another story!

DAVID HIGHAM

See CuGE ee i Senseo

A special type of electric motor called a
‘stepper’ motor is used to power the
Workshop. robot. Stepper motors are
favoured for computer control because they
use logic signals to control their speed and
rotation through discrete steps and are thus
ideally suited to digital control.

HES 2 aE GaU a uuu e inne stan ese anaemia RAR eR Ra i

The construction of a stepper motor is very
different from that of a normal motor. To
understand the principles of operation we shall
consider how a simplified stepper motor works. In
our example (see the diagram headed ‘One Step
At A Time’) there are two set of windings (‘a’ and
‘b’) on the stator and two pairs of electromagnetic
poles on the rotor. In the motors that are used in
the Workshop robot there are more stator
windings and more rotor poles than our example
shows. 3

The only problem with this convenient form of
motor control is that the motor consumes as much
current when stationary as it does when in motion.
In addition, it cannot be rotated at high speed —
the different coils cannot energise and de-energise
quickly .enough. However neither of these
problems is significant in our robot application.

Our simplified motor is capable of turning in
steps of 45° only. Additionally, the direction of
rotation cannot be controlled. The motors used in
the robot, however, have four sets of coils that are
energised in pairs, and the rotor also has many
more coils than our example shows. This means
that the direction of rotation may be controlled
and that the step angle is reduced to 7.5°. To

achieve this accurate stepwise rotation, the four
coils must be energised in a particular and
complicated sequence as follows:

Stator Coils Energising Sequence Table
Step Coil A ColB . CoilC Coil D
1 on off. on. off

2 off ON on off

a off on One on
4 on off off on

o on. off on Olt, sete

This sequence of energisation could be provided
by software, using four bits of the user port to
control the four coils. However, this requires some
complicated programming and Basic could
certainly not produce these control sequences
quickly enough. A simpler method is to use a chip
that has been specially designed for the control of
stepper motors — the SAA 1027. This contains
the output drivers and all the logic circuits to
energise the coils in the correct order to drive a
stepper motor.

To rotate the motor through one step, a single
pulse from the user port is required, with a further
signal line being needed to determine the direction
of rotation. The chip contains input stages to
detect the changes in the three inputs: a pulse to
rotate the motor one more step, areset input, anda
direction input that reverses the stator coils
energising sequence. The inputs are fed into a bi-
directional counter circuit to produce the correct
output sequence to the stator coils.

Finally, the chip also contains a power output
driver stage that can handle up to 5|00mW. The
inclusion of this stage means that the motor can be

THE HOME COMPUTER ADVANCED COURSE 835

=)

The Driving Force
Although the logic of the
Stepper motor driving chips is
complex, the principles of
operation are easily understood.
In order to turn the rotor the
Stator coils must be energised
‘ina certain sequence. A bi-
directional counter moves
through this sequence a stage at
a time in response to a pulse
signal. The sequence can also
be stepped through in the
Opposite direction if the
direction line input is changed,
causing the rotor to turn in the
opposite direction. A third input
allows the rotor to be reset to its

position at the beginning of the
sequence, If required

connected directly to the chip without the need for
external power transistors. :

The complexity of the stepper motor driver chip
means that the rest of the circuit needed for the
robot control is very simple indeed. Each motor
requires one of these chips, to which the motor is
connected. Unfortunately, the driver chips
operate at a voltage of about 12 volts, while your
computer user port operates at five volts. That is, a
logic zero is zero volts (or thereabouts) and a one is
five volts. The driver chip inputs require zero volts
for a zero input and between 7.5 and 12 volts for a
one. To interface the user port to the driver chips
we therefore also need a special two-voltage buffer
chip with the inputs operating on one voltage and
the outputs on another. This is the 40109 chip that
is also needed in the circuit.

pecasoaoasente
ss Risnnokusisn Rae URS Be EOC Dan uoaninn re ausnagay

eenrensuyist &

pase Bas 8. aenneaaee onc

a

Repeat ess a

os EA

eats aaa
vogan:

oe

ee 3h SSRN e ae SRR REREAD DORON Se Baee aa AAR RU RAARa aS Beane sofa an 3 : pasa

Bes e Dlvoguunvanaae 5 Rei s ae ee fe oo mee Te ne
PER a

Baas CRS B

eae akan re

Riss ie ee

Be peas PERS Ah: a
ie

Rare

cua oR

Bay
BRS On eS
y :

Bees NaRono

ie ro

eh

eae
RRaou one

Be

Past eid Renee

ies Paonia aa

i

IER She

3
=

soe Riis Rae ae

ee

eae
Se

Bie one

Es

eee Bes

eee
penne

ao

a
5

spat hee SaaS

Soy

Sih

ges

Scr me

SENOS

KEVIN JONES

LIZ DIXON

MOTOR 1

MOTOR 2

O4F
CAPACITOR D C

| SAA 1027
CAPACITOR DRIVER CHIP

EARTH

SAA 1027
DRIVER CHIP

D3
D2

27092 RESISTOR

100Q RESISTOR ;

a.

8. *

ee ® D1

| ° * 40109 BUFFER CHIP | . z

| e ® DO

| * i +9V
2 *

@ @ +12V

GoD EAE A B WIRELINKS DILSOCKET

10002 RESISTOR 2709 RESISTOR 40109

Gu, sD EvlE AB TRACK BREAKS BUFFER CHIP

| e%evel ®t: es * C2) ouel 2] , ‘ onsteKenie a 12)

+5V

| DO

D1

D2
D3

| SAA 1027

DRIVER
CHIP

| EARTH

SAA 1027 pu
DRIVER CHIP

| TRACK BREAK

KEVIN JONES

The Circuit Diagram
The circuitry required to drive
the two stepper motors is
Straightforward, two SAA 1027
driver chips being used to
provide the correct coil
energising Sequence to each
motor. As the driver chips
operate at 12v and user port
signals from your micro are only
ov, an additional buffer chip is
used to isolate the 12v circuitry
from the computer and translate
the low voltage user port

signals into the higher voltage
signals needed by the driver
chips. In the next instalment we
shall show how the circuit board
connects to the motors and D
plug and how to make the
correct connections with the
computer’s user port

| THE HOME COMPUTER ADVANCED COURSE 837

H { |

WUT ia MIGANN SEU

mee
Rees
me

BYTE THE DUST

to its conclusion with this instalment. We tie
up all the loose ends of our debugging
program, provide an overall view of the flow
of command within it, and finally code the

SHES ERS Se Sa EE

The first task of the main module is to set up th
interrupt mechanism, which allows us to set
breakpoints in the program being debugged.
These transfer control to the debugger and allow
us to inspect the contents of the registers and
memory locations. We must then obtain the
starting address of the program being debugged so
that control can be passed to it using the S$
command. The rest of the main routine involves
getting commands from the keyboard and
executing them; control is transferred to the
program being debugged by the S and G
commands and returned to the debugger by the
SWI instructions inserted at the breakpoints.

Two stages of initialisation for this module were
- coded in the last instalment (see page 817). The

_ entry point for interrupts comes immediately after
the call to this subroutine. The first instruction
here is to save the stack pointer, S so that it can be
used to reference the values from the registers
saved on the stack by the SWI. The next stage is
command interpretation. We have already
developed subroutines to perform all the
commands, so the problem here is to select the
subroutine appropriate to the command entered.

It is possible to code this as a set of nested IF
statements, but we will use the fact that the Get-

~ Command routine returns an offset into a table of

command characters to perform these calls using a
jump table. This is not perhaps the most efficient
method in this instance, but it is a useful technique
that is worth looking at. It involves setting up a
table of addresses for each of the subroutines that
actually carry out a command.

The JMP instruction, unlike the branch
instructions, can use any of the normal addressing
modes, including indexed and indirect. If we load
-X with the base address of the table and use the
offset in B (doubled because this will be a table of
16-bit addresses, unlike the table of eight-bit
command letters), then the command:

JMP [B,X]
will transfer control to the appropriate subroutine.
The BSR call is made to the address of this jump
instruction. As we need to set up this table in
advance, it is necessary to have another stage of
initialisation to carry out this operation.

PROCESS SET-UP-JUMP-TABLE
Data:

Jump-Table is a table of eight 16-bit addresses
CMDB, CMDU, etc. are the start addresses for the

Subroutines

Process:

For each subroutine
Get start address
Save start address in Jump-Table

Endfor

We must now consider what is to happen at the
end of the run, when the quit command (Q) is
issued, although there is, in fact, very little that
needs doing. It makes sense to leave both the
debugger and the program intact so that they can
be re-entered if necessary. |

The stack should be in the same situation when
we exit as it was when we started. One solution
would be to use a separate stack for our program
by setting S to a new value and then restoring the
old value. This is often a useful technique, but in
our situation it may be difficult finding unused
space in memory, with the debugger sitting on top
of another program. Another solution is simply to
increment S by the appropriate amount to lose
anything that we have left there, but this is also
difficult because we do not know whether or not
an interrupt has occurred and the amounts on the
stack will be different. The simplest solution is to
save the initial value of S and restore it as the last
operation of the program.

The interrupt mechanism, as set up in the
initialisation procedure, stores three bytes at the
address given in the SWI vector at SFFFA; we must
restore this or strange results may occur if the
operating system uses SWI for its own purposes.
What we clearly need is a further stage of
initialisation where we save these values to be
restored in our quit routine.

PROCESS SAVE-VALUES
Data: : |

Saved is the five bytes to store the saved values
Stack-Pointer is the current value of S, plus two
SWI-Vector is found at SFFFA

Process:
Save Stack-Pointer in Saved
Get SWl-Vector
Save three bytes at SWl-Vector in Saved

The quit routine (command Q) must simply
reverse this process and transfer control back to
the operating system. This can be done in a
number of ways: the SWI instruction itself can be
used, after its vector has been reset, or a jump can
be made to a known entry point in the operating

system. A jump via the reset vector that resides at Reset-Vector is at SFFFE
SFFFE is guaranteed to return control to the

- | Process: 7 3 Program Flow a u Id start.
SPCR RSE usa x jee Restore three bytes from Saved at SWI-Vector These Res rueaen

-Po; correspond to the debugger

PROCESS QUIT eee ee program modules. They are

Data: pee gery | placed in the order in which they

Saved is the five bytes to store the saved values We are now ready to code the main module. The Winnthoalatene abe
Stack-Pointer is the current value of S, plus two design has altered slightly from when we first — ¢oloured blue indicate separate
SWI-Vector is at SFFFA sketched it out, but it remains essentially the same. __ routines being called

Main Module | Set-Up-Jump-Table Set-Up Interrupt Command Module

ARNRALERS

OLS E

Command G

THE HOME COMPUTER ADVANCED COURSE 839

LIZ DIXON

jz, Subroutine, WY redefining register usage. This is not really

THE MAIN MODULE
Data:

Prompt for command entry is ASCII character ‘>

Command-Offset into table of command characters
and Jump-Table

Process:
Save-Values
Set-Up-Jump- Table
Set-Up-Interrupt
Get Start-Address

_ Repeat
Display Prompt

—Get-Command
Do-Command

Indefinitely

That completes our debugger program. At the
moment it is rather fragmented, but that is a
consequence of modular construction. At this
point we can optimise the code if we wish by
looking for short cuts. For example, you may find
that you have had to move a lot of values around to
make sure that they are in the right registers for a

so you might make savings by

advisable unless memory space is very restricted.
We have defined the same data areas in a number
of different places, as they are required. ‘There are
two ways in which you might handle data areas in
the complete program: you can retain the data
with the module that uses it, which is theoretically

the best option; or you can define all the data
together at the start of the program, which has real
advantages if you ever want to use a disassembler
(or even a debugger) on the program. _

The debugger should be loaded into any spare
memory not occupied or used by the program to
be debugged. It is entered by making ajump to the
DEBUG entry point, so it is necessary to know this
address before you start.

In the later part of this 6809 machine code
series, we have tried to show the best way in which
programs are developed, illustrated with a variety
of techniques. Therefore, the design of our
debugger program is not necessarily the most
efficient way to do this particular job. If you have
followed everything, however, then you should
have a fairly comprehensive understanding of
Assembly language programming in general, and
6809 Assembly in particular.

Set-Up- Jump-Table ADDD- #2 se care of the

STABLE Space for 8 two-byte STD X++ Save it

addresses LDY SFFFA Get Interrupt vector address
SETUPJ LEAY JTABLE,PCR _ Base address of table in Y LDA Y+ Get first byte to be saved

LEAX CMDB,PCR Start address of CMDB STA X ‘cae
subroutine :

SIX ,Y++ Store it in table Cl oa

LEAX CMDU,PCR Start address of CMDU ae a ao
subroutine RTS

STX ++ Store it in table Command Q

Ss eS CMDQ —LEAX ~—SAVED,PCR —_Address of Saved
STX Y++ Store it in table LDY SFFFA SWI-Vector

LEAX CMDS,PCR Start address of CMDS LDA 2,X First of three bytes
subroutine STA Yt Restored

STX Y++ Store it in table LDD 3,X -Other two bytes

LEAX CMDG,PCR Start address of CMDG STD iv Restored

subroutine LDS iX Saved Stack-Pointer

STX ay Store it in table JMP [SFFFE] Indirect jump via reset vector
LEAX CMDR,PCR a ies of CMDR Main Module

STIX Y++ Store it in table PROMPT ~ FCB >.

LEAX CMDM,PCR__ Start address of CMDM STACKP RMB 2 Stack-Pointer for Display-
: subroutine Registers

STX tt Storeitintable = DEBUG BSR SAVEIT © Save-Values :
LEAX CMDQ,PCR Start address of CMDQ BSR SETUPJ Set-Up-Jump-Table

| subroutine BSR INIT Set-Up-Interrupt and Get
STX ++ Store it in table Start-Address

This is the actual jump to the subroutine. We assume that X ENTRY STS STACKP,PCR _ Save Stack-Pointer
contains the address of JTABLE and B the offset LEAX JTABLE,PCR

DOCMD JMP [B,X] REPT02 LDA PROMPT,PCR _ Get prompt and

BSR OUTCH display it

Save-Values BSR GETCOM Get Command

SAVED RMB 5 Five bytes to be saved © LSLB | Double offset for 16-bit table

SAVEIT LEAX SAVED,PCR Get address to save in BSR DOCMD Obey Command

TFR S,D Move S to D BRA REPT02 Next Command

840 THE HOME COMPUTER ADVANCED COURSE

Here, courtesy of Oric Products International, we publish the first instalment of the 6502 programmers’ reference card

DESCRIPTION IMPLIED | IMMED | PAGE ae
ADD WITH CARRY 69 | 65
LOGICAL AND : 25

ARITHMETIC SHIFT LEFT 06

BRANCH ON CARRY CLEAR

BRANCH ONCARRY SET

we ae Bont RELATIVE

ADDRESS | ADDRESS

6D

2D

BRANCH IF EQUAL TO ZERO

COMPARE BITS WITH

~ ACCUMULATOR

BRANCH ON MINUS

BRANCH ON NOT EQUAL TO ZERO

BRANCH ON PLUS

BREAK

BRANCH ON OVERFLOW CLEAR

BRANCH ON OVERFLOW SET

CLEAR CARRY

CLEAR DECIMAL

i

COs ACS

CO | C4

C6

fee

CLEAR INTERRUPT MASK
CLEAR OVERFLOW FLAG

| COMPARE TO ACCUMULATOR |
COMPARE TO REG-X /
COMPARE TO REG-Y¥3
DECREMENT MEMORY
DECREMENT REG-X
DECREMENT REG-Y
EXCLUSIVE OR ACCUMULATOR
INCREMENT MEMORY
INCREMENT REG-X X ‘t
INCREMENT REG-Y Y

JUMP TO ADDRESS PC

2 ED SLD

S

xx ca

KA Re OR KO ee

a

i
oi

&

~¥

q
f

i
NE

Be

i

& é

ae

s

ae e

rene

or
rs : :

4 i

ni 2

ce

3
fs
F

S - ;

escent es

¥
?

aku, F

F

¢

A "

ss

Fe pa

\ribemeanonenenaia

es a

